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From Nonlinear to Hamiltonian via Feedback'

Paulo Tabuada and George J. Pappas

Department of Electrical and Systems Engineering
University of Pennsylvania

Philadelphia, PA 19104
e-mail: {tabuadap, pappasg}l@seas .upenn. edu

Abstract mechanical or, indeed, nonmechanical systems, which
leave or put the system into Hamiltonian or Lagrangian

Mechanical control systems are a very important class form."

of nonlinear control systems. They posses a rich math-
ematical structure which can be extremely important After reviewing some notions of symplectic geometry,
for the solution of various control problems. In this in Section 2, we introduce a notion of Hamiltonian con-

paper, we expand the applicability of design method- trol systems. In Section 3 we provide a simple test to

ologies developed for mechanical control systems by lo- determine if a given control system can be rendered

cally rendering nonlinear control systems, mechanical Hamiltonian with respect to a given Hamiltonian. In

by a proper choice of feedback. In particular, we char- Section 4, we determine sufficient and necessary condi-

acterize control systems which can be transformed to tions for the existence of any Hamiltonian and a feed-

Hamiltonian control systems by a local feedback trans- back transformation rendering a control system Hamil-

formation. tonian. It should be noted that the feedback trans-
formations are local in nature, and with respect to the
canonical symplectic structure. These geometric condi-
tions are then illustrated with an example. In Section 5

1 Introduction we present some topics for further research.

Mechanical control systems are clearly a very large
class of nonlinear control systems. Their refined math- 2 Hamiltonian Control Systems
ematical structure of mechanical control systems can
be extremely useful and must be exploited in their con-
trol design. It is therefore very natural that a wealth of Several different models of mechanical control systems

powerful design methodologies have been developed for abound in the literature on control of mechanical con-

mechanical systems. Examples include energy shaping trol systems. We will adopt what we think to be one

methods t4, 2, 121, specialized controllability notions of the simplest such models: Hamiltonian control sys-

and tests [9, 5], motion planning and generation [71, terns. To introduce it, we review some elementary no-

among many others. See also the monographs [11, 14] tions of symplectic geometry [6, 101. A symplectic form

for several design techniques based on the related no- w on a smooth manifold M is a two-form satisfying the

tion of passivity, following properties:

In this paper, we broaden the applicability of design 1 Nondegeneracy: w(X, Y) = 0 for every X E TM
tools for mechanical control systems to other classes of imples ey (
nonlinear control systems by proper choice of feedback. implies Y = 0,

More specifically, we will solve the following equiva- 2. Closedness: dw = 0.
lence problem: Given a control system, determine if
it is possible to transform it to a Hamiltonian control
system by a feedback transformation. We recall that where we have denoted the exterior derivative by d.
this has been considered one of the open problems in We also use the notation ixw to represent the contrac-
the area of mechanical feedback control systems as de- tion of the two-form w with the vector field X, that
scribed in the following passage from [3]: "Find other is (ixw)(Y) = w(X,Y) for any Y E TM. The first
techniques which enable one to use feedback control for property of the form w is required to obtain an isomor-

1This research is partially supported by the National Science phism between TM and T*M from w. This is achieved

Foundation Information Technology Research Grant CCR01- by the correspondence X t-+ ixw E T*M which allows

21431 to associate a unique Hamiltonian vector field XH with
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any smooth map H : M -- IR through the equality: a(x) + 13(x)v : M × U -+ U with fl(x) invertible

ixHw = dH such that the feedback transformed system:

Hamiltonian vector fields conserve energy (the Hamil- X(x) + Y Y (x)ai(x) + 1: Y(x)•3ij(x)vj (3.1)

tonian H) along their flows ¢t. This fact can be shown ij

by the following computation: is Hamiltonian with a given Hamiltonian H. From ex-

d . . pression (3.1) it is clear that one only needs to design

-tH(tx H) a(x) to change X, so we will simply consider that f3(x)

= q5(dH- XH) is the identity map on U. This question has the follow-
S Xing simple answer:

O*(w)(XH, XH)) Proposition 3.1 Let F be an affine control system on
0 a smooth manifold M equipped with symplectic from w

The nondegeneracy condition on w also implies that and H : M -• R a smooth map. There exists a local
the dimension on Al has to be an even number, see for feedback transformation rendering F Hamiltonian with

example [6]. The closedness condition is required to Hamiltonian H iff:

ensure that the flow Ot of a Hamiltonian vector field dH - ixw E span{iysw, iyw,..., iy•w} (3.2)
XH respects the symplectic form, that is Ot*'w = w,
as can be seen again by simple computations where we or equivalently:
denote by Ix .w the Lie derivative of w along XH. (dH - ixw) A iyw A iyw A... A iyw 0

d 5*w = Ot*(Lxw)
*(diXH w + ixHdw) Proof: Assume that a such a feedback exists, then

= t*(diH+ix~da-) the feedback transformed system satisfies:
= 4¢t*(ddH +ixudwo)

* I X+f2?= aj(x)y,(x)w =dH

We now introduce the class of Hamiltonian control sys- which we rewrite as:

tems we will use in this paper: P
dH - ixw = ZaiyW

Definition 2.1 Let M" be a smooth manifold equipped
with symplectic form w and let U be the input manifold, clearly showing that (3.2) is satisfied. Conversely, as-
A control affine system F: M x U -+ TM: sume that (3.2) holds, then there are locally defined

p smooth functions ai : M -- IR such that:
F = X + Yiui Pi=1udH - ixw = aiiy

is said to be a Hamiltonian control system with Hamil- j=1

tonian H if the vector field X is Hamiltonian with We now define a by the equalities ai = -a2 which
Hamiltonian H. define the desired local feedback. 0

Within the context of Hamiltonian control systems one While the conditions in Proposition 3.1 provide a quick
could also consider other models, for example, one test to determine if one can transform a control system
could consider that the vector fields Yj are also Hamil- to a Hamiltonian one with a specified H, they are not
tonian [16] or even the more general class of port- useful if one wants to search for a feedback transfor-
controlled Hamiltonian systems [17]. However, we will mation and also a Hamiltonian. We devote the next
focus on this simple model as the techniques developed section to this problem.
in this paper extend to such cases in a straightforward
manner.

4 Achieving any Hamiltonian

3 Achieving a given Hamiltonian To provide a solution for the general case where no
Hamiltonian is a priori specified we will reshape condi-

We start by determining if there exists a tion (3.2). We start by making the following additional
feedback transformation, that is, a map' assumption:

1In the current setting where control systems are assumed to mations to affine transformations as this ensures that the trans-
be affine in the inputs it is natural to restrict feedback transfor- formed system is still input affine.



1. The distribution spanned by the input vector Theorem 4.1 Let F be an affine control system on a
fields Y1, Y2 ,..., lKp, denoted by A, is locally of smooth manifold M with symplectic form w and denote
constant rank. by C and Z the involutive closures of A' and A"' which

we assume to be regular. There exists a locally defined

4.1 A Geometric Solution map H : M - R and a local feedback transformation

To develop a geometric solution we introduce the sym- rendering F Hamiltonian with Hamiltonian H if

plectic orthogonal of A, which we denote by A' and dim(C) = dim(C) (4.2)
define by:

Proof- In view of the discussion preceding Theo-

A"' = {Z E TM : w(Z,Y) = 0 VY A rem 4.1 it suffices to show that (4.2) is sufficient and
necessary for the existence of the map H : M -- R

Note that A' is locally of constant rank in virtue of satisfying o 0 A"' (
nondegeneracy assumption and smoothness of w. By necessity assume the existence of H = H - y satisfy-
making use of A"' we can reformulate condition (3.2) ing A"- C T((H)-'(0)). Let i : M -* M be the map
to a more useful form. If condition (3.2) is satisfied i(x) = (x, H(x)) and note that:
then dH - ixw =Z aiiyvw and contracting this a a
expression with any vector field in A" we have: Ti. Z(x) =x T .Z

dH(Z) = w(X,Z) Vz A' (4.1) 9a
&xa

Conversely, if (4.1) is satisfied, then dH = ixw + -y for
some •y E span{iycw, iy2 o,..., iy Pw} which implies con-

dition (3.2) and shows how (3.2) can be equivalently ex- = Z o i(x)

pressed as (4.1). This expression can also be regarded where the second equality follows from (4.1). This
as a partial differential equation (PDE) whose solution shows that the vector fields Z are i-related to the vec-
provides the desired Hamiltonian H. We now interpret tor fields Z. Since if Zi is i-related to Ti and Zj is i-
this PDE geometrically by defining the new manifold: related to Z, the bracket. [Zi, Z] is i-related to [ZZjj-

M M x R (see [1]), it follows by induction that dim(C) = dim(C).

with local coordinates (x, y), where x are coordinates Sufficiency is proved by applying Frobenius theorem to
for M and y coordinates for IR. We also define the map C (which is regular by assumption) to conclude the exis-
H: M -* R by: tence of a submanifold of M to which the vector fields

in A"' are tangent. Furthermore, Frobenius theorem
H(x, y) = H(x) - y also ensures that this submanifold is locally described

as well as the vector fields: by the zero level of a smooth map H : M - R (1]. It
remains to show that a 0 0. We proceed by contra-

-Z + c(XZ)4- diction assuming that dim(C) = dim(ý) and 0.
Z. + XThen, the vector field Z a0 + 1° - ker(dH)

defining the distribution A"- on M. These new objects ker(H-•dx + OHdy). This shows that dim(U) is at least
allow to rewrite (4.1) as: greater them dim(C) by one, a contradiction. M

£zH =0 VZ EA"'-
Theorem 4.1 gives necessary and sufficient conditions

which we interpret as the requirement that vector fields for the existence of a solution to PDE (4.1). The so-
Sare tangent to the submanifold (H)-1 (0) of M. lution of partial differential equations naturally appear
We thus see that, in this geometric interpretation of in similar local feedback equivalence problems, such as
PDE (4.1), finding a Hamiltonian H is equivalent to feedback linearization [8], and several control design
finding a submanifold of M, implicitly defined by a problems for mechanical control systems [2, 12].
map H : M --* R, such that A- is contained in the
tangent space of (H)-'(0). Furthermore H must also As an immediate consequence of Theorem 4.1 we see
satisfy 9• 7 0 which ensures, via the implicit function that in the case dim(A"') = 1, that is, control system F

has 2m - I inputs and dim(M) = 2m, condition (4.2)
theorem, that H defines a function on M, the desired
Hamiltonian H. Necessary and sufficient conditions for
the local existence of such a map H are given in the
next result which provides geometric conditions for the Corollary 4.2 Let F be an affine control system on a
integrability of PDE (4.1): smooth manifold M of dimension 2m with symplectic



form w and 2m - 1 inputs. Then, there exists a locally Theorem 4.3 (Alternative Characterization)
defined map H : M -- R and a local feedback trans- Let F be an affine control system on a smooth mani-
formation rendering F Hamiltonian with Hamiltonian fold M with symplectic form w. There exists a locally
H. defined map H : M -* R and a local feedback transfor-

mation rendering F Hamiltonian with Hamiltonian H

The discussion so far has assumed that the symplectic iff:

form w has been a priori specified. However, this is iziizjdizw = 0 VZi, Zj E Aw (4.6)
not necessary in virtue of Darboux theorem [61 which
asserts that, locally, every symplectic manifold of di-
mension 2m is symplectomorphic (diffeomorphic by a Proof: As we have seen in the proof of Theorem 4.1,
diffeomorphism that preserves the symplectic forms) to existence of H and the feedback transformation implies
IR2

, with symplectic form: that every vector field Z E A"' is i-related to the vec-
"m tor field Z e AE for i(x) = (x, H(x)). This, in turn,

w = dxi A dyi (4.3) implies that [Zi, ZjJ is also i-related to jZ, Zj] leading

i=1 to:

expressed in coordinates (I 1, X2,. Xm iY1, Y2.P) 1Zl = i Z &i + ZA)
for IR2". We thus see that if a control system can be lo- a xy

cally rendered Hamiltonian with respect to the form w, Comparing this expression with (4.4) we see that we
then by a change of coordinates, it is also Hamiltonian necessarily have iz, izj dixw = 0.
with respect to any other symplectic form.

To show sufficiency we note that if [Zi, Zj] = aZj
4.2 An alternative Characterization for Zi, Zi, Z1 E C and smooth real valued functions ai,

The conditions for the existence of a Hamiltonian and a it follows by (4.4) that [, 7j] equals:
feedback transformation given in Theorem 4.1 require
the computation of several objects such as A, E--,C, [Zi, Zj]-- + (w(X, [Zi,Zj]) + izizdixw)-
C, etc. However, some of these objects contain some ax izyi
degree of redundancy and we will now see how one can a1Z a a wX tZ)+ z z iw
verify the conditions of Theorem 4.1 in a more direct =L ýa Zx + (w(X, ajZ) + izýiz7dixwd) y
way. In particular we shall take advantage of the special &
form of the vector fields in Aw". FRom the expression of = T ajZj2 x + (5 aiw(X, Zi) + iziizj dixw) -

[ZT, Zj] in local coordinates: ax ay

azi a11 zijd

dw(X, Zj) 0 W(X, Z0) E

a g i) 0]1 Zj I The assumption iziz~dixw = 0 now allows to con-
[dw,(X, 1  X,Zj elude that [Zi, Z11 = EaZai ziY1] = Eaty

we see that [TZ-j] is given by: and an induction argument shows that dim(C) =

a dim(Z) which by Theorem 4.1 implies the existence of

[Zi, + (Lzw(X, Zj) - Lzjw(X, Zi)) (4.4) H and the desired feedback transformation. 0

This formulation also allows to see that Corollary 4.2
We now rewrite Lz~w(X, Z3 ) - Izjw(X, Zi) as: is a simple consequence of the skew-symmetry of w.

-d(izjixw)(Zi) - Lzjw(X, Zi) If dim(A") = 1 we have that for any Zi, Zj E A"',
Zi = XZj for a smooth real valued map A and

which by the Cartan magic formula [1] becomes: (dixw)(Zi, AZi) = A(dixw)(Zi, Zi) = 0.

-(Lzjixw - izjdixw)(Zi) - f£zw(X, Zi) The necessary steps to determine the existence of a
= -izjzjixw + izjz~dixw - Lzjw(X, Zi) solution to PDE (4.1) can now be resumed to the fol-

= £zjizixw - izLzixw + iziz~dixw lowing:

= w(X, [Zi,ZjJ]) + izizjdixw (4.5)

and where the last equality is a consequence of the fact 1. Compute a basis for the sym-
that £z izi Y - izi2Zj = 3y([Zi, Zj]) for any one-form plectic orthogonal A" of A,
7-. Aw={ZETM : w(Z,Y)=O VYEA},

Expression (4.5) allows to formulate the following al- 2. Check if iziizjdixw = 0 for every Zi, Zj in the
ternative version of Theorem 4.1: basis of A' computed in step 1.



If Theorem 4.1 is satisfied, then a solution to (4.1) which by differentiation gives:
must be obtained in order to determine the feedback
transformation. If H is such a solution, we determine dixw = -2xlX 2dx 2 A dxl - x 3dx 3 A dxl

the feedback transformation by computing the smooth +x 2dx 3 A dx 2 - x3dxl A dx 3

functions a, satisfying: +x 2x 4dxl A dx 4 + Xl X4dx 2 A dx 4

P = -2xlx 2 dx 2 A dxj + x 2dx 3 A dx 2

dH ixw .. ajiyZ , +x 2x 4dxl A dx 4 + xlx 4dx 2 A dx 4
i=1

These functions allow to determine the term a(x) of the and evaluating dixw on Z, and Z2 :

feedback transformation a(x)+ /3(x)v by the equalities iz 2dixw = x2dx 2
ci = -ai. The term 13(x) can be taken as the identity
on U or any other invertible (pointwise) linear map izliz2 dixw = 0
from U to U. shows, via Theorem 4.3, that a Hamiltonian and

a feedback transformation exist.
4.3 Example
We now provide an example of the previously intro-
duced methodology. Consider the following control sys- To obtain H one has to solve (4.1), which in this case
tern: results in:

xH _ 12

22 212 &II
±2 = X1 X2 + 2 X3 __ - -X3

2:6 = 2X1 X 2 X4 + X 2 X 3U2 aX3

'ýn = X1x3 (4.7) It suffices to solve the first equation to obtain:

on R 4 with symplectic form w = dxl Adx 2 +dx 3 Adx4 . H -- (X- X + Xj 2l)

In this case we have:

rolX One now computes dH - ixw = (X 2X2 - X2x 3)dX2 -

21x+ x21 012 I 0xlx 2 x 4 dx 4 which can be written as dH - ixwXl2 2I !X3 0
xIx 2x4  22 X23 a, iyw + a 2iy2w for:

X . X l1 YJ =1
(4.8) a, = (x 3 - xl) a2 = -- xlx 4  (4.11)

X3

and A = span{Yi, Y2}. We now follow the steps out- These functions now allow to define the feedback trans-
lined in the previous section computing: formation as ai(x) = -ai(x) and for 83(x) we simply

use the identity on U. The feedback transformed sys-

1. The symplectic orthogonal of A is obtained by ter is now of the form:

first computing: _H
ax22

iYw = x 2dx 2  OH
iYw = x 2 x 3 dx 4  (4.9) i - x

O9H
and then determining A' as the annihilating dis- 3 = ±-- + X2X3U2

tribution of span{iyw, iy2 w}. Distribution A"' is 4H

then given by the span of: x4  -
ax3

[ [revealing its Hamiltonian structure.
Zi = 0 Z2 = 0 (4.10)

z 0[ Z =[j 5 Conclusions

2. We now compute: In this paper, we have addressed the problem of ren-

iXW (1x 2 + xdx2)dXl + X2x3d dering a nonlinear control system Hamiltonian by a
2 3 2 1  + X 2  proper choice of feedback. We showed that the solu-

-xlx3 dx 3 + xIx 2x 4dx 4 tion is given by the solution of a partial differential



equation, and provided sufficient and necessary condi- systems. SIAM Journal on Control and Optimization,
tions for the local existence of solutions. These results 35(3):766-790, May 1997.
enlarge the class of systems to which powerful control [10] Jerrold E. Marsden and Tudor S. Ratiu. Intro-
design methods developed for mechanical systems are duction to Mechanics and Symmetry. Texts in Applied
applicable. Mathematics. Springer-Verlag, 1999.

Many related problems remain open. When we can- [11] Romeo Ortega and Per Johan Nicklasson.

not perform such a feedback transformation it may still Passivity-Based control of Euler-Lagrange Systems.

be possible to extract a quotient (an abstraction, see Communications and Control Engineering. Springer-

for example [13, 15]) or a subsystem that is mechan- Verlag, New York, October 1998.
ical, or that can be rendered mechanical by feedback. [12] Romeo Ortega, Arjan van der Schaft, Bern-
This would allow to synthesize controllers for part of hard Maschke, and Gerardo Escobar. Interconnec-
the variables by making use of techniques developed tion and damping assignment passivity-based control
for mechanical control systems. Another alternative is of port-controlled Hamiltonian systems. Automatica,
to perform a change of coordinates on the state space 38(4):585-596, April 2002.
that would render the system Hamiltonian, possibly [13] George J. Pappas and Slobodan Simic. Con-
complemented by a feedback transformation. sistent hierarchies of affine nonlinear systems. IEEE

Transactions on Automatic Control, 47(5):745-756,
2002.
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